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1. Introduction

The three-dimensional pure quantum gravity with a negative cosmological constant has

been conjectured to be dual to a holomorphically factorized extremal conformal field theory

(ECFT), of central charge c = 24k [1]. While it is not known whether ECFTs with k > 1

exist, one may compute its partition function on a Riemann surface from the gravity path

integral, by doing a perturbative expansion around gravitational instantons and sum over

all instantons. A step toward computing the gravity partition function was carried out in

[2], and it was conjectured that the classical regularized Einstein-Hilbert action evaluated

on a handlebody hyperbolic instanton agrees1 with the leading term in the 1/k expansion

of the “fake” CFT partition function, which captures the part of the full ECFT partition

function that factorizes on Virasoro descendants of the identity operator. It is then further

conjectured in [2] that the full contribution from the handlebody instanton is given by the

fake CFT partition function, the latter determined entirely by sphere correlation functions

of Virasoro descendants of the identity.

A priori, one should sum over all hyperbolic three-manifolds M whose conformal

boundary is the given Riemann surface Σ, of genus g. When g > 1, such manifolds

are not all handlebodies. The question remains how to calculate these non-handlebody

contributions. It should be of the form

ekS0+S1+k−1S2+··· (1.1)

1A (three-dimensional) handlebody is a three manifold homeomorphic to the domain enclosed by a

surface in R
3. When the boundary Riemann surface has genus two, this conjecture was checked to nontrivial

orders near the factorization limit.
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where Sl is the l-loop contribution around the instanton background, and depends holo-

morphically on the moduli of the Riemann surface. Scl = −k(S0 + S0) is the regularized

classical instanton action. In this note we will describe how to compute Scl, and hence S0.

It should have the following properties:

(1) Scl is a harmonic function on the moduli space of Σ, and hence can be written as

−k(S0 + S0) for some holomorphic function S0.

(2) Let Γ′ ⊂ Sp(2g,Z) be the subgroup of the mapping class group of Σ that extends

to M (hence “preserving” M). eS0 transforms under Γ′ as a modular form of weight

12. This is needed to be consistent with the full partition function transforming as a

modular form of weight 12k.

(3) When a handle of Σ is pinched, and if M does not fill in the handle, then ekS0(M ;Σ)

only contributes to the factorization on operators in the CFT of dimension ∆ ≥ k.

This is needed to be consistent with the fact that the handlebody contribution already

captures the factorization on operators of ∆ < k.2

The regularized Einstein-Hilbert action on M has been computed by Krasnov [3] when

M is a handlebody, and by Takhtajan and Teo [4] for more general hyperbolic manifolds,3

and was shown to coincide with a suitably defined Liouville action evaluated at its critical

point. The Scl with the above desired properties, especially property (1), is related to the

Liouville action of [4] by a shift, due to conformal anomaly.

In section 2 we will sketch a topological classification of the hyperbolic three-manifold

instantons. Section 3 describes the general strategy in computing the instanton contribu-

tion. In section 4 we consider the factorization limits of the instanton action.

2. A classification of hyperbolic gravitational instantons

Consider a hyperbolic three-manifold M = H3/G, where G ⊂ SL(2,C) is a torsion free

Kleinian group. Suppose that M has a conformal boundary Σ, which is a connected

Riemann surface of genus g. In other words, Σ = U/G, where U = P1 − Λ is the domain

of discontinuity for G on the boundary P1 of H3, and Λ is the set of limiting points of G.

If G is freely generated and purely loxodromic, it is a Schottky group. In this case M

is a handlebody. In general, consider the map

i∗ : π1(Σ) → π1(M) (2.1)

2The first nontrivial primaries in the ECFT have dimension k + 1, so the factorization on operators

of dimension ∆ ≤ k involves Virasoro descendants of the identity only. In [2] it was found that the fake

CFT partition function, when summed over its modular images, factorizes correctly on states of dimension

∆ < k, at least in the genus two case. On the other hand, the factorizations on ∆ = k operators may not

be correctly reproduced by the handlebody contributions alone.
3In [4] M is required to be of “Class A”, and have in general multiple boundaries, as recalled below. We

are interested in the case where the boundary of M is connected, and M can be lifted to a finite cover M̃

which is of Class A.
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(a) (b) (c)
Figure 1: A typical fundamental domain R of (a) a handlebody, (b) a class A manifold with two

boundaries, and (c) a non-handlebody with one boundary, in the hyperbolic 3-space H3.

induced by i : Σ = ∂M →֒ M . If i∗ is not injective, suppose γ is a loop in Σ such that

i(γ) is null-homotopic in M . By Dehn’s lemma (see for example [5]) there is an embedded

disc D ⊂ M such that ∂D = γ. By cutting along D, we can reduce (M,Σ) to one of the

following three geometries:

(i) (M ′,Σ′), where M ′ is connected, and Σ′ has genus g − 1;

(ii) two disconnected three-manifolds (M ′
1,Σ

′
1) and (M ′

2,Σ
′
2), such that g′1 + g′2 = g.

(iii) (M ′,Σ′
1 ⊔Σ′

2), where Σ′
1 and Σ′

2 are the two connected boundary components of M ′.

Note that in the case (iii) we will be forced to consider manifolds with multiple bound-

aries. Such gravitational instantons are rather pathological, as will be discussed later. By

repeating such surgeries, we can reduce M to one or several disconnected three-manifolds

whose boundaries are π1-injective. We will call the hyperbolic manifold M with a π1-

injective connected conformal boundary Σ a “tight” manifold. A simple class of tight man-

ifolds are given topologically by twisted I-bundles over an unoriented surface S, namely

I → M → S, such that Σ is a two-fold covering of S. These are in fact all tight manifolds

with the property that i∗π1(Σ) is a finite index subgroup of π1(M) (and the index is 2).

On the other hand, there are also tight manifolds with [π1(M) : i∗π1(Σ)] = ∞.4

A fundamental domain for M = H3/G in H3 is of the form (R,F ), where R is a

fundamental domain of G in H3, and F = G ∩ U a fundamental domain for Σ = U/G.

In general, R can be described as a cell complex, with 3, 2, 1, 0-cells, corresponding to the

bulk of R, its faces, edges, and corners. G is called a “Class A” Kleinian group if one

can choose the fundamental domain R to have no 0-cells in the bulk of H3. General non-

handlebody class A manifolds M will have multiple boundary components, Σ1, · · · ,Σn. We

shall consider the case when (M,Σ) can be lifted to a finite covering space (M̃ ,Σ1⊔· · ·⊔Σn),

such that M̃ is of class A.

3. The holomorphically factorized classical action of M = H3/G

The regularized Einstein-Hilbert action of [6],[3] takes the form

SEH(M ; Σ) =
4k

π
lim
ǫ→0

(

Vǫ −
1

2
Aǫ + 2π(2g − 2) ln ǫ

)

(3.1)

4I’m grateful to C. McMullen for explaining to me such examples.
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Here Vǫ and Aǫ are the volume of the bulk hyperbolic three-manifold and the area of

the boundary cutoff surface, respectively; ǫ is the cutoff parameter. The cutoff surface is

chosen so that its induced metric has constant curvature −1/ǫ2. The ln ǫ divergence in

the Einstein-Hilbert action with boundary term is related to the conformal anomaly in the

boundary CFT.

The main result of [4] is that, if (M̃,Σ1 ⊔ · · · ⊔ Σn) is of class A, then the regularized

Einstein-Hilbert action on M̃ is related to the classical Liouville action evaluated at its

critical point, SL(M̃ ,Σ1 ⊔ · · · ⊔ Σn), by

SEH(M̃ ,Σ1 ⊔ · · · ⊔ Σn) = −k

[

SL(M̃,Σ1 ⊔ · · · ⊔ Σn) +

n
∑

i=1

(2gi − 2) · const

]

. (3.2)

where gi is the genus of Σi. We refer to [3],[4] for the precise definition of SL (which,

importantly, depends not only on Σ but on the Kleinian group G as well).5 An important

property is that SL is a Kahler potential for the Weil-Petersson metric on the Teichmüller

space of Σ1 ⊔ · · · ⊔Σn. More generally, if M is not in class A but can be lifted to its n-fold

covering space M̃ which is in class A, then the regularized Einstein-Hilbert action on M is

given by

SL(M ; Σ) =
1

n
SL(M̃ ; Σ, · · · ,Σ) (3.3)

Clearly, SL(M ; Σ) will also be a Kahler potential for the Weil-Petersson metric on the

Teichmüller space of Σ. Consequently, if M1,M2 have the same conformal boundary Σ,

then SL(M1; Σ) − SL(M2; Σ) is a harmonic function on the Teichmüller space of Σ, i.e.

exp(SL(M1; Σ) − SL(M2; Σ)) is holomorphically factorized.

We define the “holomorphically factorized” classical action Scl = −kS0 by

S0(M ; Σ) + S0(M ; Σ) = SL(M ; Σ) + 12 ln
det′ ∆

det ImΩ

= SL(M ; Σ) + 12 ln
ζ ′Σ(1)

det ImΩ
+ (2g − 2)c0 (3.4)

where ζΣ(s) is the Selberg zeta function for the Riemann surface Σ [7], and c0 is a constant.

By Zograf’s factorization formula for det′ ∆ [8], the RHS of (3.4) is harmonic when M is a

handlebody; by the above argument, this must also be the case for all M whose boundary

is Σ. (3.4) still leaves the ambiguity of adding an imaginary constant to S0(M ; Σ), which

may depend on the topology of M ; this corresponds to the overall phase of the contribution

ekS0 to the holomorphic partition function. A natural choice of the phase is such that eS0

is real when ReΩ = 0. This is consistent with the factorization of the partition function.

This still leaves an overall sign ambiguity for eS0 . The sign may potentially be different

for distinct topologies.

The full quantum holomorphic partition function on M , Zk(M ; Σ), should be a weight

12k holomorphic modular form under ΓG ⊂ Sp(2g,Z), the subgroup of the mapping class

5Our convention for SL differs from that of [4] by a factor of π.
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Figure 2: Reducing M to M ′ along a filled handle.

group of Σ that leaves M invariant, defined on the Teichmüller space of Σ.6 It takes the

form

Zk(M ; Σ) = exp

[

kS0(M ; Σ) + S1(M ; Σ) +
1

k
S2(M ; Σ) + · · ·

]

(3.5)

where S1, S2, · · · are loop corrections, suppressed by powers of 1/k. In (3.4), det′ ∆ is

modular invariant, and SL(M ; Σ) is invariant under G. Due to the det ImΩ factor, |ekS0|2
transforms under ΓG with holomorphic and anti-holomorphic weight 12k, as expected.

Suppose (M,Σ) can be reduced to (M ′,Σ′) by cutting along an embedded disc (D,∂D).

For a general holomorphic CFT of central charge c = 24k, the partition function on Σ and

Σ′ are related by

Z(Σ̌) = G(Σ′, z1, z2; q)
k
∑

i

q∆i〈Ai(z1)Ai(z2)〉Σ̌′ (3.6)

where Σ is obtained from Σ′ by gluing a handle of modulus q to z1, z2. The notation Σ̌, Σ̌′

indicates a compatible choice of basis 1-cycles on the Riemann surfaces, as the partition

functions are modular forms of nonzero weight. G is a universal holomorphic correction

factor that depends only on the gluing procedure, with the property G(Σ′, z1, z2; q = 0) = 1.

The conjecture of [2] is that we can compute the gravity partition function of Σ from that

of Σ′ by

Zk(M ; Σ) = G(Σ′, z1, z2; q)
k

∑

Ai∈V ir(k)

q∆i〈Ai(z1)Ai(z2)〉fake;M ′,Σ′ (3.7)

where the sum is only over Virasoro descendants of the identity (denoted by V ir(k)). On

the RHS, the “fake” two-point function of Ai ∈ V ir(k) on Σ′ is completely determined

by Zk(M
′; Σ′), since all correlators of the stress tensor on Σ′ can be obtained by taking

derivatives of Zk(M
′; Σ′) with respect to the complex moduli.

When M ′ has two connected components M ′
1 and M ′

2, with conformal boundary Σ′
1

and Σ′
2, the gravity partition functions can be similarly related as

Zk(M,Σ) = G(Σ′
1, z1; Σ

′
2, z2; ǫ)

k
∑

Ai∈V ir(k)

ǫ∆i〈Ai(z1)〉fake;M ′

1
,Σ′

1
〈Ai(z2)〉fake;M ′

2
,Σ′

2
(3.8)

where Σ is obtained by sewing Σ′
1 and Σ′

2 together along a tube of modulus ǫ, attached

to the points z1 ∈ Σ′
1 and z2 ∈ Σ′

2. G(Σ′
1, z1; Σ

′
2, z2; ǫ) is the appropriate holomorphic

6When M is a handlebody, Zk(M ; Σ) is simply invariant under Γ∞. We are working in the convention

that the partition function of a chiral boson on Σ is normalized to 1; in other words, Z is the partition

function of the holomorphic CFT divided by that of 24k chiral bosons.

– 5 –
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Figure 3: Reducing M to M ′

1
⊔ M ′

2
along a filled tube.

Figure 4: Reducing M to M ′ with two boundary components.

correction factor in factorizing a (c = 24) CFT partition function on Σ into the one-point

functions on Σ′
1 and Σ′

2, with the property G(Σ′
1, z1; Σ

′
2, z2; ǫ = 0) = 1.7

Finally, when M ′ is connected but have two boundary components Σ′
1 and Σ′

2, the

contribution from M and M ′ should be related by

Zk(M ; Σ) = G(Σ′
1, z1; Σ

′
2, z2; ǫ)

k
∑

Ai∈V ir(k)

ǫ∆iDAi(z1)
Σ′

1

DAi(z2)
Σ′

2

Zk(M
′; Σ′

1 ⊔ Σ′
2) (3.9)

Here DA(z)
Σ is a differential operator in the moduli of Σ, defined by the property

DA(z)
Σ Z(Σ) = 〈A(z)〉Σ, where Z(Σ) and 〈A(z)〉Σ are the partition function and one-point

function of a general c = 24k CFT on Σ, A ∈ V ir(k).

The last case is however puzzling from the dual CFT perspective, as it appears to spoil

the factorization of the partition function on Σ into the product of the partition functions

on Σ′
1 and Σ′

2 in the pinching limit, barring miraculous cancelations. There are two possible

interpretations: (1) the dual CFT does not exist, due to the failure of the factorization

of the gravity partition function; or (2) gravitational instantons that lead to connected

M ′’s with multiple boundary components under the cutting surgery (Figure 4) should be

excluded from the gravity path integral. Note that since M is a hyperbolic manifold, it

is atoroidal, which implies that Σ′
1 and Σ′

2 must have genus g′1, g
′
2 > 1.8 So the potential

failure of the factorization of the partition function on Σ can only show up at genus g ≥ 4.

Also note that [π1(M) : i∗π1(Σ)] = ∞ in this case. From now on we will adopt the second

interpretation above, and exclude these pathological gravitational instantons. This may

seem rather ad hoc from the perspective of the gravity path integral; on the other hand, it

leads to dual CFT partition functions with consistent factorization property, and one may

be able to extract CFT correlation functions from them.

7When Σ′

1 and Σ′

2 are of genus one, G(Σ′

1, z1; Σ
′

2, z2; ǫ) is related to the holomorphic correction factor

of [9],[2] by a normalization factor χ10(Ω)/(ǫ2∆(τ1)∆(τ2)), due to our different convention of the genus g

partition function.
8An explicit example of such M is obtained topologically by attaching a solid handle to the two sides

of Σ′
× I , where Σ′ is a genus g > 1 surface. Now M has a genus 2g boundary, and admits a hyperbolic

metric. The corresponding Kleinian group G is a free product of a (quasi-)Fuchsian group with Z, the latter

generated by a loxodromic element of SL(2, C) of sufficiently large multiplier.

– 6 –
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Figure 5: The twisted I-bundle as a Z2 quotient.

In general, the above conjectured relations between Zk(M,Σ) for different pairs (M,Σ)

related by surgeries encode nontrivial relations between fake Virasoro correlators and the

Liouville action SL(M ; Σ), generalizing the conjectures of [2] for handlebodies.

We know S0 explicitly in two special classes of examples. When M is a handlebody,

as explained in [2],

S0(M ; Σ) = 12
∑

γ prim.

∞
∑

m=1

ln(1 − qm
γ ) (3.10)

where the sum runs through all primitive conjugacy classes of the Schottky group G, and

qγ is the multiplier of γ ∈ SL(2,C), with |qγ | < 1.

When M is topologically a twisted I-bundle I → M → S, we can lift (M ; Σ) to its

double cover (M̃ ; Σ ⊔ Σ), such that M = M̃/ι for an involution ι on M̃ . When Σ = Σ,

M̃ is the quotient of H3 by a Fuchsian group G̃. In this case we can explicitly write the

hyperbolic metric on M̃ as

ds2 = dr2 + cosh2 rds2
Σ, (3.11)

where ds2
Σ is a hyperbolic metric on Σ. ι acts as r → −r together with an orientation

reversing, fixed-point free involution on Σ. For example, suppose Σ has genus two, with

period matrix Ω =

(

ρ ν

ν σ

)

. Then Σ admits such an involution at the real locus of its

moduli space, ρ = −σ̄, ν = iν2, ν2 ∈ R. At a generic point on the moduli space, the metric

on M̃ does not take the form (3.11), and G̃ will be a quasi-Fuchsian group instead of a

Fuchsian group (it fixes a Jordan curve on ∂H3 = P1, rather than the equator of the P1).

In the case Σ = Σ̄ and G̃ is a Fuchsian group, the Liouville action simply evaluates to

SL(M̃ ; Σ,Σ) = 2SL(M ; Σ) = 2c(2g − 2) for some constant c [10],[4]. In other words,

2ReS0(M ; Σ = Σ) = c(2g − 2) + 12 ln
ζ ′Σ(1)

det ImΩΣ
(3.12)

ζΣ(s) can be defined as

ζΣ(s) =
∏

Υ prim.

∞
∏

m=0

(1 − qm+s
Υ ), (3.13)

– 7 –
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where the first product is over all primitive conjugacy classes of the Fuchsian group of

Σ, and qΥ is the multiplier of Υ ∈ SL(2,R), qΥ < 1. Υ also corresponds to a primitive

geodesic on the surface Σ equipped with hyperbolic metric, and qΥ = e−l(Υ) where l(Υ)

is the length of the geodesic. (3.12) could be used to determine the harmonic function

ReS0(M ; Σ) on the entire Teichmüller space of Σ.

Now that we know how to compute S0, at least in principle, a remaining question

is how to compute the 1/k corrections S1, S2, · · · for tight manifolds (M,Σ). Once these

are known, Zk(M,Σ) for the tight manifolds will be determined, and it can be used to

determine the partition functions of all (M,Σ) by the sewing procedure described earlier.

It would also be nice to have a formula analogous to (3.10) for all M (non-handlebodies).

4. Factorization

4.1 Degenerating limits of Selberg zeta function

Starting with a Riemann surface Σ of genus g, let us consider the limit where a handle is

pinched, and Σ is reduced to a Riemann surface Σ′ of genus g− 1. In order to examine the

behavior of Selberg zeta function on Σ in this limit, we will assume that Σ is equipped with

a hyperbolic metric, and let the length of the short geodesic around the pinched handle be

2πl. Along the pinched handle, the metric can be approximated by the hyperbolic metric

on an infinite tube,

dχ2 + l2cosh2 χdφ2 =
|dw|2

sin2(Re w)
(4.1)

where

w = −i ln
sinh χ + i

cosh χ
+ ilφ, Re w ∈ (0, π) (4.2)

The modulus of the tube, τ , is related to the length of the short geodesic by τ2 = π/(2πl) =

1/(2l). dw approximates a holomorphic 1-form on Σ, restricted to the tube. The period

matrix of Σ takes the form

ΩΣ →
(

τ ∗
Ω′

Σ

)

(4.3)

in the pinching limit, where ∗ stands for finite entries.

We can write the Selberg zeta function ζΣ(s) as

ζΣ(s) = f̃Σ(s)
∞
∏

m=0

(1 − e−2πl(m+s))2, (4.4)

where we singled out the contributions from the short geodesics (counted with both ori-

entations). f̃Σ(s) denotes the contribution from all other closed geodesics on Σ. f̃Σ(s),

just like ζΣ(s), has a simple zero at s = 1. This can be understood from the fact that the

density of closed geodesics of length L grows as ρ(L) ∼ e−L/L [11]. Therefore we have

ζ ′Σ(1) = f̃ ′
Σ(1)

∞
∏

m=1

(1 − e−2πml)2. (4.5)

– 8 –
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Now f̃ ′
Σ(1) is finite in the l → 0 limit, since it does not involve the contribution from the

short geodesic of length 2πl.

Using the modular transformation of the Dedekind eta function

∞
∏

m=1

(1 − e−2πml) = e
πl

12 η(il) =
e

πl

12√
l
η(i/l) ∼ e−

π

12l√
l

, (l → 0) (4.6)

and det ImΩΣ ∼ τ2 ∼ 1
2l , we find

ln
ζ ′Σ(1)

det ImΩΣ
∼ −π

3
τ2 + finite (4.7)

in the pinching limit. This result is also known from [12].

Let us now consider the limit in which Σ is pinched at a tube connecting two com-

ponents Σ′
1 and Σ′

2, of genus g′1 and g′2, g′1 + g′2 = g. Along the tube, the metric is again

approximated by (4.1); the modulus of the tube is related to l in the same way as before.

A difference is that, in the separating degeneration limit,

ΩΣ →
(

ΩΣ′

1
0

0 ΩΣ′

2
,

)

(4.8)

and in particular det ImΩΣ is non-degenerate. The Selberg zeta function takes the form

ζΣ(s) → f1(s)f2(s)
∞
∏

m=0

(1 − e−2πl(m+s))2 (4.9)

where f1(s) and f2(s) involve closed geodesics on Σ′
1 and Σ′

2, respectively. At the sepa-

rating degeneration, each fi(s) has simple zero at s = 1, since the number of geodesics of

length ∼ L on each punctured Riemann surface Σ′
i grows like ρ(L) ∼ eL/L. In particular,

∂s|s=1(f1(s)f2(s)) → 0 in the l → 0 limit. In order to extract the l dependence, we make

use of the estimates of [12]

ζ ′Σ(1) ∼ λ1

∞
∏

m=1

(1 − e−2πml)2 × finite, l → 0 (4.10)

where λ1 is the smallest nonzero eigenvalue of the Laplacian ∆ on Σ (all other nonzero

eigenvalues of ∆ are of order 1 in the degeneration limit). It is easy to see that λ1 ∼ l, and

hence (4.7) still holds in the separating degeneration limit.

4.2 SL in the factorization limits

Now let us consider the Liouville action SL in the factorization limits. A special case is

when M is a twisted I-bundle, and the complex structure of Σ is such that it admits an

orientation reversing Z2 involution. As discussed in section 3, SL takes constant value

along this real locus of the moduli space of Σ. It then immediately follows from (3.4) that

when a handle or tube of Σ is pinched (along the real locus), the contribution from M to

the partition function behaves like

ekS0(M ;Σ) ∼ qkf(M ′,Σ′) + O(qk+1) (4.11)

– 9 –
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Figure 6: The strip in the fundamental domain of Σ corresponding to the pinched tube.

where q = e2πiτ is the pinching modulus parameter, and f is a generic function that depends

on the pinched geometry. This means that M can only contribute to the factorization on

states of dimension ∆ ≥ k along any tube of the Riemann surface.

More generally, the Liouville action SL(M ; Σ) in (3.4) is bounded when a cycle corre-

sponding to an element γ of G is pinched, or equivalently, when the pinched loop is not

contractible in M . In fact, the thin tube that is being pinched is formed by gluing a thin

strip of the fundamental domain F of Σ on the P1 by identifying the two sides by γ, and

γ′(z) approaches 1 in the pinching limit along the strip. One may worry about the poten-

tial divergence in SL due to the singular behavior of the Liouville field φ near the pinching

point. To see this, let us represent the thin strip as the domain between two circles in the

complex z-plane, both centered on the real axis and touching say at z = 0 (Figure 6). Near

the pinching point, the Liouville field φ is approximately given by

φ ≃ − ln(Imz)2, (4.12)

and so that |∂zφ|2 ≃ eφ. It follows that in the Liouville action SL, both the integral of the

Liouville Lagrangian over the bulk of the fundamental domain F , as well as the boundary

integrals, are finite. The singular behavior of S0 (3.4) then entirely comes from the term

12 ln(ζ ′Σ(1)/det ImΩ), as analyzed earlier.

We conclude that when a loop γ of Σ is pinched, if γ is incontractible in M , then

ekS0(M ;Σ) can only contribute to the factorization of the partition function on states of

dimension ≥ k.

Note that if γ were contractible in M , the pinching limit would correspond to shrinking

a pair of circles whose interiors are excluded from F , rather than having two circles touching

one another. In this case the Liouville action SL will generically diverge. For example,

suppose a circle C : |z| = r0 is identified with C ′ : |z − z0| = r0 via the action

γ(z) =
−e2iθ0r2

0

z
+ z0 (4.13)

We have |γ′(z)| = 1 along C. The Liouville action receives the contribution [8],[4]

1

π

∫

F
d2z(|∂zφ|2 + eφ) − i

π

∮

C
φd ln γ′(z) + 4 ln |c(γ)|2 (4.14)
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from the domain near C and C ′. Here c(γ) = c = e−iθ0/r0 for γ =

(

a b

c d

)

∈ SL(2,C).

Near C, in the r0 → 0 limit, the Liouville field behaves as

eφ ≃
(

π

2 ln r0

)2 1

|z|2 sin2(π
2

ln |z|
ln r0

)
(4.15)

for |z| ≪ 1. This is determined by rewriting the metric (4.1) in the coordinate z = e(w−π)/l.

From the integral of |∂zφ|2 near C and C ′, as well as the boundary term, the Liouville action

behaves as

SL ∼
∫

r0

rdr(∂rφ(r))2 − 4φ(r0) − 8 ln r0

∼ −4 ln r0 + O(1). (4.16)

Note that the length of the short geodesic is

2πl = 2πr0e
φ(r0)/2 =

π2

− ln r0
(4.17)

Therefore we have SL ∼ 2π/l +O(1) in the l → 0 limit. This precisely cancels the singular

term from (4.7), and hence contribution the holomorphically factorized partition function

(3.4) remains finite in the l → 0 limit, consistent with the expected factorization (3.6).

Let us write the full gravity partition function as Z = Zγ + Žγ , where Zγ is the

contribution from all hyperbolic three-manifolds M that fill in γ, and Žγ is the contribution

from the remaining gravitational instantons, namely the ones such that γ is not contractible

in M . By our conjectured relations (3.9), (3.8), as γ is pinched, Zγ factorizes on the

Virasoro descendants of the identity; if the dual CFT is extremal, this means that Zγ

already factorizes “correctly” on states of dimension ∆ ≤ k, since all such states are

Virasoro descendants of the identity. To avoid spoiling this factorization, one expects Žγ

to contribute only to the factorization on states of dimension ∆ ≥ k + 1. The above

discussion indicates that Žγ can only factorize on states with ∆ ≥ k, which is consistent

with the dual CFT having no nontrivial primaries up to dimension k − 1. It is intriguing

whether the contribution to the factorization on dimension ∆ = k states in Žγ exactly

cancel. This would require cancellation say between certain handlebody (subleading in the

Sp(2g,Z) Poincaré series of [2]) and non-handlebody contributions in the pinching limit.

This issue is currently under investigation.

5. Summary

We have given a prescription for computing the classical contribution from all hyperbolic

instantons, handlebody or not, to the holomorphically factorized partition function on

a general Riemann surface. The 1/k quantum corrections to the contribution from (non-

handlebody) “tight” manifolds remain to be understood. Once these are known, the gravity

partition function is in principle determined completely. In the end, we would like to

check the non-handlebody contributions against the dual ECFT, say by examining the
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factorization on states and extracting correlation functions in the CFT. It is also important

to understand whether the gravitational instantons with multiple boundary components

can be consistently excluded. These are left to future works.
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